
TBS Fusion Serial Interface
With the TBS Fusion Serial Interface one or more TBS Fusions can be controlled over a
single wire or RS-485 connection. It can be used to change the operating frequency, query
the current frequency and RSSI (Received Signal Strength Indicator), and perform “RSSI
scans” over a wide range of frequencies in the 5.8 GHz band. Multiple TBS Fusions can be
connected to the same bus with wire lengths of several hundred meters, enabling the use of
the TBS Fusion in applications where remote management is required.

Enabling the Serial Interface
Update the firmware of your TBS Fusion to v2.34 or later to use the serial interface. It needs
to be enabled and configured via CRSF (e.g. using the OLED display of the TBS Fusion or
TBS Agent). To enable the serial interface, set “Channel Pin Mode” to “Serial”. In addition,
one can configure the baud rate (“Serial Baud”) and the address (“Serial Addr”).

Physical Connection
The serial interface uses two of the pins on the back of the TBS Fusion. The pinout is shown
below. The serial interface uses the two topmost pins, which are usually used for changing
the channel using the buttons on FPV goggles. The TXRX (CH0) pin is used for both
receiving and sending data. The TXEN (CH1) pin indicates when the TBS Fusion is sending
data and is intending to be used with an external RS-485 transceiver, as explained below.
The logic level used by the TBS Fusion is 3.3 V, but the pins are 5 V tolerant and can also be
used with 5 V logic.

1: TXRX (CH0)

2: TXEN (CH1)

3: CH2

4: Video

5: Audio

6: Audio

7: GND

8: NC

9: 5 V

Single Wire Connection
The simplest way of connecting one or more TBS Fusions to a controller is to use only the
TXRX signal. The controller could e.g. be a microcontroller or a USB-to-serial converter.
Note that this connection is single-ended and the TBS Fusion has an internal 10k Ohm
protection resistor, which limits the maximum cable length to a few meters. For controllers

TBS Fusion Serial Interface Page 1 / 7

https://www.team-blacksheep.com/products/prod:agentx


that support sending and receiving asynchronous serial (UART) data on the same pin, the
connection is very simple, as shown in the schematic below.

For controllers that have separate TX and RX pins for sending and receiving data,
respectively, one option is to use a custom non-inverting open drain circuit using two
N-channel MOSFETs and resistors. When selecting MOSFETs, it is important to select one
with a gate threshold voltage of less than 3.3 V, such that it works with 3.3 V logic. Note that
the controller will receive the data it sends to the TBS Fusion(s) and the controller software
needs to discard this data before receiving the response from the TBS Fusion.

Two Wire RS-485 Connection
The recommended way of controlling one or more TBS Fusions over extended distances is
to use a 2 wire RS-485 connection. RS-485 uses differential signaling, which provides noise

TBS Fusion Serial Interface Page 2 / 7



immunity and allows for long wires. A good introduction to RS-485 can be found here. When
using RS-485, an RS-485 transceiver needs to be connected to each TBS Fusion.

An example of two TBS Fusions connected to an RS-485 controller is shown below. The
controller could be a microcontroller with an RS-485 transceiver, or an USB-to-RS-485
interface (e.g. FTDI USB-RS485-WE-1800-BT). On the side of the TBS Fusion, a
MAX485SE transceiver is used. The transceiver has A and B pins for the differential RS-485
signals, which are connected to the bus. Both the RO (Receiver Output), DI (Driver Input)
pins need to be connected to the TXRN pin of the TBS Fusion and the DE (Driver Enable)
and /RE (Not Receiver Enable) to the TXEN pin. The TXEN pin will go high when the TBS
Fusion is transmitting data, which enables the RS-485 driver of the MAX485SE. Note also
that a common ground (GND) is needed for all devices, so the total wires needed is 3 (A, B,
GND).

Additional recommendations when using RS-485:
● The wiring should be twisted pair with 120 Ohm termination resistors at both ends.
● The A/B signal naming can sometimes be confusing. If it does not work, try swapping

the A/B wires on the controller side.
● Some cheap MAX485 transceiver breakout boards available online have pull-up

resistors on the RO, /RE, DE and DI pins. Those need to be removed. They may also
have a 120 Ohm termination resistor, which may need to be removed as well when
several TBS Fusions are connected to the same bus.

TBS Fusion Serial Interface Page 3 / 7

https://www.ti.com/lit/wp/slla545/slla545.pdf
https://ftdichip.com/products/usb-rs485-we-1800-bt/
https://www.analog.com/en/products/max485e.html


Asynchronous Serial Protocol
Technical details about the protocol are below. A reference controller implementation in
Python is provided in the tbs-fusion-py package.

The serial interface uses a half-duplex asynchronous serial protocol. Multiple baud rates are
supported (9600, 19200, 38400, 57600, 115200 bps). They can be configured via CRSF
(see above). The serial protocol uses 8 data bits, no parity bit, and one stop bit (8N1).

Message Protocol
Messages sent to the TBS Fusion and responses from the TBS Fusion start with a header
with the following contents:

Field Length (Bytes) Description

START CODE 2 Always 0xAA 0x55

CRC 2 (uint16) Checksum (CRC16)

ADDRESS 1 (uint8) TBS Fusion address

TYPE 1 (uint8) Type of message

LENGTH 1 (uint8) Length of payload in bytes

Note: All multi-byte values (CRC, LENGTH, etc.) use little-endian encoding.

The header is followed by a payload with a length of LENGTH bytes. The content of the
payload depends on the type of message, as described below. The CRC is computed from
the start of ADDRESS to the end of the payload. The type of CRC used is
“CRC16-CCIT-FALSE” (width: 16 bits, polynomial: 0x1021, reflect in: False, reflect out:
False, xor-in: 0xFFFF xor-out: 0x0000).

The TBS Fusion will only transmit messages if it has received a command or request from
the controller. An example of a message exchange is shown below. The controller sends a
“0x01: Frequency and RSSI Request” and the TBS Fusion responds with a “0x02:
Frequency and RSSI Response” (see below for details).

TBS Fusion Serial Interface Page 4 / 7

https://github.com/BrainFPV/tbs-fusion-py


Message Types
0x00: Message Acknowledgement
This message is sent by the Fusion in response to messages that do not request data from
the Fusion, such as “0x03: Command Set Frequency”. It is also used to indicate errors in
response to other messages (e.g. invalid commands or parameters). The payload of this
message consists of two bytes:

Field Length (Bytes) Description

MESSAGE TYPE 1 (uint8) The message type the acknowledgment is
for.

RETURN CODE 1 (uint8) Return code. Values other than 0 indicate an
error.

0x01: Frequency and RSSI Request
This message gets the current frequency and the RSSI of each receiver. The message does
not have a payload. The response to this message is “0x02: Frequency and RSSI
Response”. Note: An example of this message is shown in the image above.

0x02: Frequency and RSSI Response
This message is sent by the Fusion in response to 0x01. The message has the following
payload:

Field Length (Bytes) Description

FREQUENCY 2 (uint16) Frequency in MHz

RSSI A 1 (uint8) RSSI receiver A (scaled to 0 .. 255)

RSSI B 1 (uint8) RSSI receiver B (scaled to 0 .. 255)

TBS Fusion Serial Interface Page 5 / 7



Note: An example of this message is shown in the image above. In the example,
FREQUENCY is 5800 (0x16A8), RSSI A is 0x12, and RSSI B is 0x16.

0x03: Command Set Frequency
This command sets the operating frequency of the Fusion. The payload consists of the
frequency, as shown below. The Fusion sends an 0x00 message to acknowledge the receipt
of the message.

Field Length (Bytes) Description

FREQUENCY 2 (uint16) Frequency in MHz.
Minimum: 4900 Maximum: 6200.

0x04: Frequency Range Scan Request
This command initiates a frequency scan, i.e. the Fusion will measure the RSSI (signal
strength) over a range of frequencies and then returns it using a “0x06: Frequency Scan
Response” message. The payload of the request is as follows:

Field Length (Bytes) Description

START FREQUENCY 2 (uint16) Start frequency in MHz.
Minimum: 4900 Maximum: 6200.

STOP FREQUENCY 2 (uint16) Stop frequency in MHz.
Minimum: 4900 Maximum: 6200.

FREQUENCY STEP 1 (uint8) Step size in MHz.

RECEIVER 1 Which receiver to use for the scan:
0: Both receivers (faster)
1: Receiver A
2: Receiver B

DELAY 1 (uint8) Delay in milliseconds between setting
the frequency and the RSSI
measurement. If the delay is too small,
the RSSI will not be stable.
Recommended is 25 ms.

Note that the scan starts at START FREQUENCY, but STOP FREQUENCY is not included,
i.e., it behaves like the range type in Python.

The maximum number of frequencies that can be scanned is 100. With a delay of 25 ms and
both receivers, the time needed to perform the scan is about 1.6 seconds. When only one
receiver is used, the time doubles to about 3.2 seconds.

TBS Fusion Serial Interface Page 6 / 7

https://docs.python.org/3/library/stdtypes.html#range


0x05: Frequency List Scan Request
This command initiates a frequency scan over an arbitrary list of frequencies. The TBS
Fusion responds with a “0x06: Frequency Scan Response” message. The payload of the
request is as follows:

Field Length (Bytes) Description

RECEIVER 1 Which receiver to use for the scan:
0: Both receivers (faster)
1: Receiver A
2: Receiver B

DELAY 1 (uint8) Delay in milliseconds between setting
the frequency and the RSSI
measurement. If the delay is too small,
the RSSI will not be stable.
Recommended is 40 ms for large
frequency steps.

FREQUENCIES N * 2 (uint16) Frequencies to scan.

The maximum number of frequencies (N) is 100. Note that when the frequency steps are
very large, a DELAY of about 40 ms is needed for the RSSI to be stable.

0x06: Frequency Scan Response
The Fusion sends this message in response to a “0x04: Frequency Scan Request”. The
payload of the message is an array of RSSI values encoded as 1 byte unsigned integers
(uint8) with one value per requested frequency point.

Field Length (Bytes) Description

RSSI N * 1 (uint8) RSSI scaled to (scaled to 0 .. 255)

Note: When both receivers are used, the RSSI values are interleaved (“RSSI A, RSSI B,
RSSI A, …”).

TBS Fusion Serial Interface Page 7 / 7


